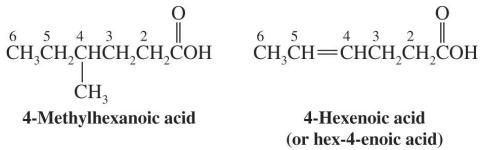
Capítulo 18 Ácidos Carboxílicos e Derivados. Adição Nucleofílica-Eliminação no carbono Acila

♦ Introdução


→ O grupo carboxílico (-CO₂H) é da mesma familia de compostos denominados de acila ou derivados de ácidos carboxílicos

Structure	Name	Structure	Name
R C CI O C C	Acyl (or acid) chloride Acid anhydride	R NH ₂ O C	Amide
R O R' O R' R C ■ N	Ester Nitrile	R NHR' O C R NR'R"	

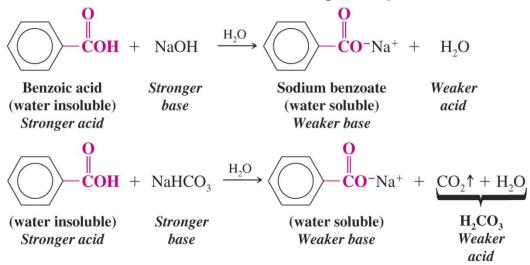
♦ Nomenclatura e Propriedades Físicas

→ Na nomenclatura IUPAC o nome dos ácidos troca-se o terminal o do alcano por oico

O carbono carboxílico é a posição 1

- → Os nomes comuns continuam em uso
 - Metanoico e etanoico são ácido fórmico e ácido acético
- → Ácidos Carboxílicos formam ligações de hidrogênio fortes entre eles e com a água

Ácidos Carboxílicos com até 4 carbonos são misciveis em água em qualquer proporção


Tabela 18.2 Ácidos Carboxílicos

Estrutura	Nome Sistemático	Nome Comum	p.f. (°C)	p.e. (°C)	Solubilidade em Água (g 100 m L^{-1} de H_2O) 25°C	pK_a
HCO ₂ H	Ácido metanóico	Ácido fórmico	8	100,5	∞	3,75
CH ₃ CO ₂ H	Ácido etanóico	Ácido acético	16,6	118	∞	4,76
CH ₂ CH ₂ CO ₂ H	Ácido propanóico	Ácido propiônico	- 21	141	∞ .	4,87
CH ₃ (CH ₂) ₂ CO ₂ H	Ácido butanóico	Ácido butírico	- 6	164	∞	4,81
CH ₃ (CH ₂) ₃ CO ₂ H	Ácido pentanóico	Ácido valérico	- 34	187	4,97	4,82
CH ₃ (CH ₂) ₄ CO ₂ H	Ácido hexanóico	Ácido capróico	- 3	205	1,08	4,84
CH ₃ (CH ₂) ₆ CO ₂ H	Ácido octanóico	Ácido caprílico	16	239	0,07	4,89
CH ₃ (CH ₂) ₈ CO ₂ H	Ácido decanóico	Ácido cáprico	31	269	0,015	4,84
CH ₃ (CH ₂) ₁₀ CO ₂ H	Ácido dodecanóico	Ácido láurico	44	17918	0,006	5,30
CH ₃ (CH ₂) ₁₂ CO ₂ H	Ácido tetradecanóico	Ácido mirístico	59	20020	0,002	
CH ₃ (CH ₂) ₁₄ CO ₂ H	Ácido hexadecanóico	Ácido palmítico	63	21917	0,0007	6,46
CH ₃ (CH ₂) ₁₆ CO ₂ H	Ácido octadecanóico	Ácido esteárico	70	383	0,0003	
CH ₂ CICO ₂ H	Ácido cloroetanóico	Ácido cloroacético	63	189	Muito solúvel	2,86
CHCl2CO2H	Ácido dicloroetanóico	Ácido dicloroacético	10,8	192	Muito solúvel	1,48
CCl ₃ CO ₂ H	Ácido tricloroetanóico	Ácido tricloroacético	56,3	198	Muito solúvel	0,70
CH3CHCICO2H	Ácido 2-cloropropanóico	Ácido α-cloropropiônico		186	Solúvel	2,83
CH2ClCH2CO2H	Ácido 3-cloropropanóico	Ácido β-cloropropiônico	61	204	Solúvel	3,98
C ₆ H ₅ CO ₂ H	Ácido benzóico	Ácido benzóico	122	250	0,34	4,19
p-CH ₃ C ₆ H ₄ CO ₂ H	Ácido 4-metilbenzóico	Ácido p-toluico	180	275	0,03	4,36
p-CIC ₆ H ₄ CO ₂ H	Ácido 4-clorobenzóico	Ácido p-clorobenzóico	242		0,009	3,98
p-NO ₂ C ₆ H ₄ CO ₂ H	Ácido 4-nitrobenzóico	Ácido p-nitrobenzóico	242		0,03	3,41
CO ₂ H	Ácido 1-naftóico	Ácido α-naftóico	160	300	Insolúvel	3,70

Acidez dos Ácidos Carboxílicos

→ O proton carboxílico é o mais ácido e tem pK_a = 4 - 5

- Àcidos carboxílicos são facilmente desprotonados hidróxido de sódio o bicarbonato de sódio formando sais de carboxilatos
- Sais Carboxílicos são mais solúveis em água do que o ácidos

→ Grupos retiradores de eletrons vizinhos ao grupo carboxílico aumenta a acidez do ácido carboxílixo

P Eles estabilizam o ânion carboxilato por deslocalização indutiva da carga

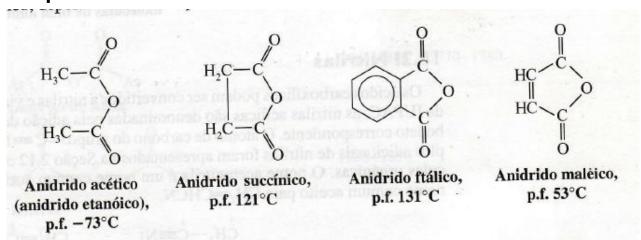
Capítulo 18

Ácidos Dicarboxílicos

- → Ácidos Dicarboxylicos são denominados de ácidos alcanodióicos no sistema IUPAC
- → Common names are often used for simple dicarboxylic acids

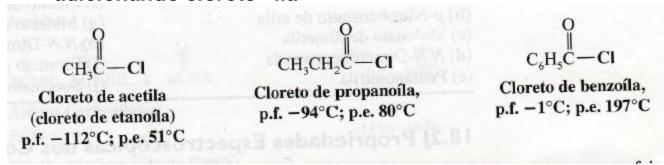
Tabela 18.3 Ácidos Dicarboxílicos

	The state of the spice of the state of the s		p <i>K_a</i> (a 25°C)	
Estrutura	Nome Comum	p.f. (°C)	pK_1	pK_2
HO ₂ C—CO ₂ H	Ácido oxálico	189 dec	1,2	4,2
HO ₂ CCH ₂ CO ₂ H	Ácido malônico	136	2,9	5,7
HO ₂ C(CH ₂) ₂ CO ₂ H	Ácido succínico	187	4,2	5,6
IO ₂ C(CH ₂) ₃ CO ₂ H	Ácido glutárico	98	4,3	5,4
$HO_2C(CH_2)_4CO_2H$	Ácido adípico	153	4,4	5,6
is-HO ₂ C—CH—CH—CO ₂ H	Ácido maléico	131	1,9	6,1
rans-HO ₂ C—CH—CH—CO ₂ H	Ácido fumárico	287	3,0	4,4
CO ₂ H	Ácido ftálico	206-208 dec	2,9	5,4
CO ₂ H				
CO,H	Ácido isoftálico	345-348	3,5	4,6
CO ₂ H	Ácido tereftálico	Sublima	3,5	4,8
CO ₂ H	Acido terertanco	Suomia	0,0	.,.
\Diamond			18.2	
				de .
The second secon				
CO ₂ H				


Ésteres

- → Os nomes dos ésteres são derivados dos nomes dos ácidos carboxílicos correspondentes e do álcool que esterifica
- → Esteres, não formam ligações de hidrogênio eentre eles portanto tem menor ponto de ebulição do que os ácidos carboxílicos e são bastante solúveis em água

Nome	oxílicos Estrutura	p.f. (°C)	p.e. (°C)	Solubilidade em Água (g 100 mL ⁻¹ a 20°C)
**************************************	HOO CH	- 99	31,5	Muito solúvel
ormato de metila	HCO ₂ CH ₃	- 79	54	Solúvel
ormato de etila	HCO ₂ CH ₂ CH ₃	- 99	57	24,4
cetato de metila	CH ₃ CO ₂ CH ₃	- 82	77	7,39 (25°C)
cetato de etila	CH ₃ CO ₂ CH ₂ CH ₃	- 93	102	1,89
cetato de propila	CH ₃ CO ₂ CH ₂ CH ₂ CH ₃	- 7 4	125	1,0 (22°C)
cetato de butila	CH ₂ CO ₃ CH ₂ (CH ₂) ₂ CH ₃	- 73	99	1,75
ropanoato de etila	CH ₃ CH ₂ CO ₂ CH ₂ CH ₃	- 93	120	0,51
tanoato de etila	CH ₃ (CH ₂) ₂ CO ₂ CH ₂ CH ₃	- 91	145	0,22
Pentanoato de etila	CH ₃ (CH ₂) ₃ CO ₂ CH ₂ CH ₃	- 68	168	0,063
exanoato de etila	CH ₃ (CH ₂) ₄ CO ₂ CH ₂ CH ₂	- 12	199	0,15
Benzoato de metila	C ₆ H ₅ CO ₂ CH ₃	- 35	213	0,08
Benzoato de etila	C ₆ H ₅ CO ₂ CH ₂ CH ₃	33 3 (424	196	Pouco solúvel
Acetato de fenila Salicilato de metila	CH ₃ CO ₂ C ₆ H ₅ o-HOC ₆ H ₄ CO ₂ CH ₃	- 9	223	0,74 (30°C)


Anidridos de ácidos carboxílicos

→ Esses são denominados retirando o termo ácido e substituindo-o por anidrido

Cloretos de ácidos

→ Os cloretos de acila são denominados retirando –ico do e adicionando cloreto –ila

Amidas

- → Amidas sem substituintes no nitrogênio são nomeadas substituindo ácido -ico ou oico por amida
 - Grupos no nitrogenio são nomeados como subatituindo localizando –os no N ou *N,N*-

$$CH_{3}C-NH_{2}$$

$$CH_{3}C-NH_{2}$$

$$CH_{3}C-NHC_{2}H_{5}$$

$$CH_{3}$$

$$CH_{3}C-NHC_{2}H_{5}$$

$$CH_{3}$$

$$CH_{3}C-NHC_{2}H_{5}$$

$$CH_{3}$$

$$Acetamida & N,N-Dimetilacetamida, & N-Etilacetamida, & p.e. 205°C$$

$$p.f. 82°C; p.e. 221°C$$

$$CH_{3}C-N$$

$$CH_{5}$$

$$CH_{2}CH_{2}CH_{3}$$

$$N-fenil-N-propilacetamida, & Benzamida, & P.f. 130°C; p.e. 290°C$$

- → Amidas com um ou dois hidrogênios no nitrogênio formam ligações de hidrogênio muito fortes e tem alto ponto de fusão e ebulição
 - Amidas *N,N*-dissubstituidas não formam ligações de hidrogênio entre si e tem menor ponto de fusão e ebulição.

→ Ligação de hidrogênio entre amidas em proteinas e peptideos são importantes na determinação da estrutura terciaria dos mesmos.

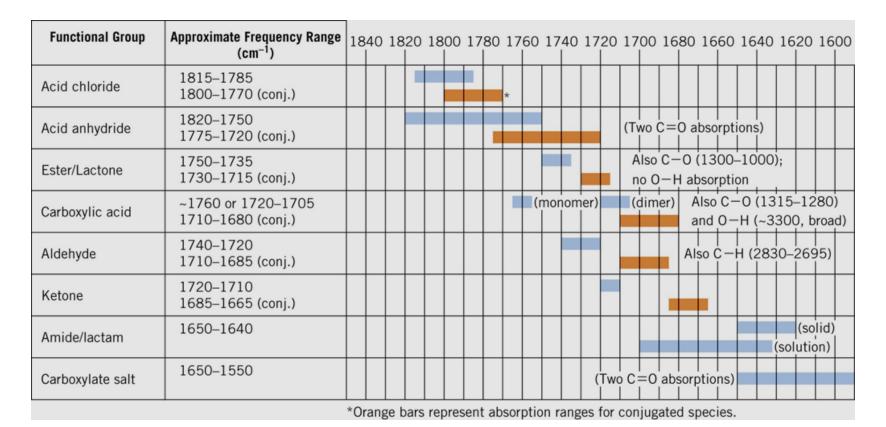
Hydrogen bonding (red dots) between amide molecules

Hydrogen bonding between amide groups of peptide chains. This interaction between chains (called a β sheet) is important to the structure of many proteins.

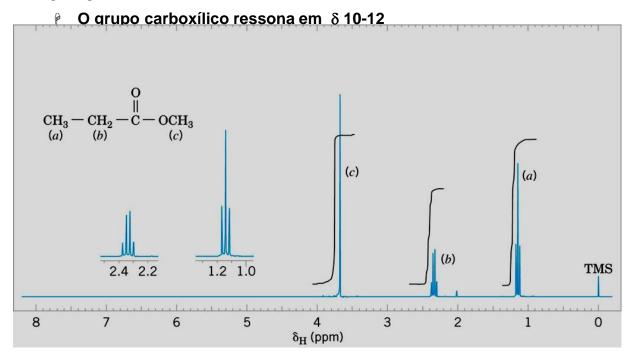
10

Nitrilas

- → Nitrilas acíclicas são denominadas adicionando o sufixo nitrila ao nome do alcano
- → A nitrila é o carbono 1
 - Nome popular da Etanenitrila é a acetonitrila


$$\overset{2}{\text{CH}_{3}} - \overset{1}{\text{C}} = \overset{3}{\text{C}} \overset{2}{\text{H}_{2}} = \overset{1}{\text{C}} \overset{1}{\text{H}_{-}} \overset{1}{\text{C}} = \overset{1}{\text{N}} :$$
Ethanenitrile
(acetonitrile)

Chapter 18


Propriedades Espectroscópicas do compostos Acilas

→ Espectros no infravermelho

- Estiramento da carbonila varia de fequencia ade acordo com o tipo do derivado de ácido carboxílico
- Estiramento O-H do ácido carboxílico dá uma banda larga entre 2500-3100 cm⁻¹
- ₱ Estiramento N-H de amidas acontecem em 3140-3500 cm⁻¹

- → Espectros de RMN de¹H
- \rightarrow Os hidrogênios α dos ácidos carboxílicos e seus derivados em δ 2.0-2.5

→ Espectros de RMN de ¹³C

O sinal do carbono carbonílico de ácidos carboxílicos e seus derivados aparecem em δ 160 to 180

12

H₃C-C H₃C-C H₃C-C H₃C-C H₃C-C
$$\frac{1}{8}$$
 H₃C-C $\frac{1}{8}$ NH₂ $\frac{1}{8}$ 177.2 $\frac{1}{8}$ 170.7 $\frac{1}{8}$ 170.3 $\frac{1}{8}$ 172.6 $\frac{1}{8}$ 117.4 Capítulo 18

♦ Preparação de ácidos carboxílicos

Oxidação de alcenos

$$RCH = CHR' \xrightarrow{(1) \text{ KMnO}_4, \text{ OH}^-} RCO_2H + R'CO_2H$$

$$(2) \text{ H}_3O^+$$

$$RCH = CHR' \xrightarrow{(1) O_3} RCO_2H + R'CO_2H$$

Oxidação de aldeídos e álcoois primários

$$R - CHO \xrightarrow{(1) \text{Ag}_2\text{O or Ag}(\text{NH}_3)_2^+\text{OH}^-} RCO_2H$$

$$RCH_2OH \xrightarrow{(1) \text{KMnO}_4, \text{OH}^-} RCO_2H$$

$$(2) \text{H}_3O^+$$

$$R - CHO \text{ or } RCH_2OH \xrightarrow{H_2CrO_4} RCO_2H$$

Oxidação de alquilbenzenos

$$\begin{array}{c|c}
\hline
 & CH_3 \xrightarrow{(1) \text{KMnO}_4, \text{OH}^-} \\
\hline
 & \text{heat} \\
\hline
 & (2) \text{H}_3\text{O}^+
\end{array}$$

Por oxidação do anel benzênico

$$R - C_6H_5 \xrightarrow{(1) O_3, CH_3CO_2H} R - COH$$

Por oxidação de metil cetonas (reação do Haloformio)

$$Ar \xrightarrow{C} CH_3 \xrightarrow{(1) X_2/NaOH} Ar \xrightarrow{O} COH + CHX_3$$

 Por hidrólise de cianoidrinas (alfa hidroxi ácidos) e outras nitrilas

$$\begin{array}{c}
R \\
C = O + HCN \Longleftrightarrow R \\
R'
\end{array}$$

$$\begin{array}{c}
C \\
CN
\end{array}$$

$$\begin{array}{c}
HA \\
H_2O
\end{array}$$

$$\begin{array}{c}
C \\
R'
\end{array}$$

Haletos de alquila primários podem reagir com cianeto e formar nitrilas e estas hidrolizam a ácido carboxílicos

$$HOCH_2CH_2CI \xrightarrow{\text{NaCN}} HOCH_2CH_2\text{CN} \xrightarrow{(1) \text{ OH}^-, \text{H}_2\text{O}} HOCH_2CH_2CO_2\text{H}$$

$$(2) \xrightarrow{\text{H}_3\text{O}^+} HOCH_2CH_2CO_2\text{H}$$

$$BrCH_2CH_2CH_2Br \xrightarrow{\text{NaCN}} NCCH_2CH_2CH_2CH_2CH \xrightarrow{\text{H}_3O^+} HO_2CCH_2CH_2CH_2CO_2H$$

Por carbonilação de Reagentes de Grignard

$$CH_{3} \xrightarrow{C} CC \xrightarrow{Mg} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}}$$

(85%)

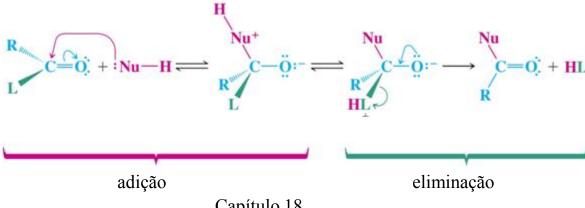
Adição Nucleofílica – Eliminação no carbono acila

→ Lembramos que os aldeidos e cetona sofre adição nucleofílica na dupla ligação carbono oxigênio

$$\begin{array}{c}
R' \\
R'
\end{array}$$

$$\begin{array}{c}
C = O \\
R'
\end{array}$$

$$\begin{array}{c}
Nu \\
R'
\end{array}$$

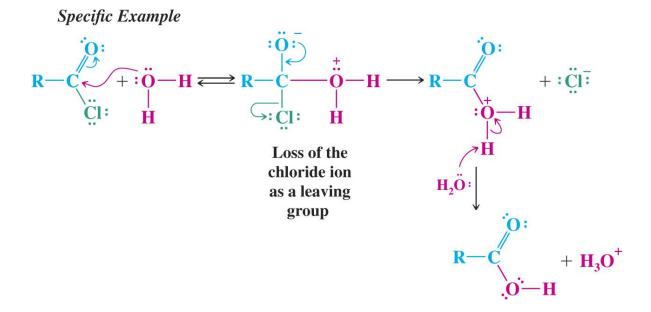

$$\begin{array}{c}
Nu \\
R'
\end{array}$$

$$\begin{array}{c}
R' \\
R'
\end{array}$$

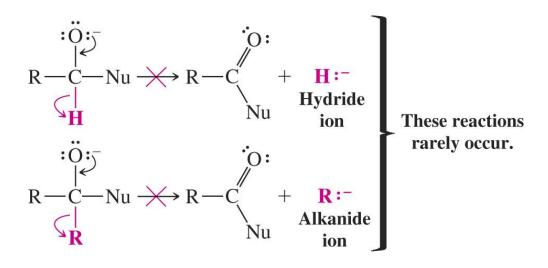
$$\begin{array}{c}
R' \\
R'
\end{array}$$

$$\begin{array}{c}
Adição nucleofilica
\end{array}$$

- → O grupo carbonílico dos ácido e seus derivados sofrem adiçãoeliminação
 - The nucleophile reacts at the carbonyl group to form a tetrahedral intermediate
 - The tetrahedral intermediate eliminates a leaving group (L)



Capítulo 18


16

→ Para sofrer adição-eliminação nucleofílica o composto acila tem que ter um bom grupo de saida

- P Cloreto de acila reage com perda do ion cloreto
- Anidridos reagem com perda de ion carboxilato

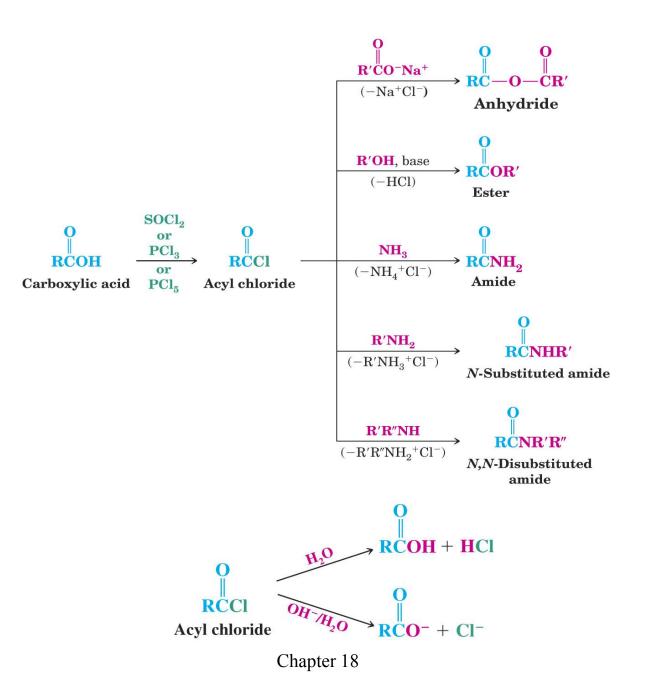
- → Esteres, ácidos carboxilicos e amidas generamente reagem com a perda de grupos de saida como álcool, águae amina respectivamente.
 - Esses grupos de saida são gerados por protonação do composto acila
- → Aldeidos e cetonas não reagempor este mecanismo porque não possuem grupo de saida bons

Reatividade relativa dos compostos de acila:

- → Em geral areatividade está relacionada a facilidade de saida do grupo abandonador (L)
 - Facilidade de saida é inversamente relacionada a basicidade
 - P Cloreto é mais fraco e o melhor grupo de saida
 - Aminas são bases mais fortes e os piores grupos de saida
- → Via de regra os compostos acilas podem ser sintetizados osapartir dos mais reativos.
 - Sinteses de derivados de acila a partir de derivados de acila menos reativos édifícil e necessita de reagentes especiais.

♦ Cloretos de acila

- Síntese de cloretos de acila
 - → Cloretos de acila são feitos de ácidos carboxílicos por reação com cloreto de tionila, tricloreto de fóforo ou pentacloreto de fósforo
 - Eses reagentes agem pois transformam o grupoo hidroxíla do ácido num bom grupo de saída


$$\begin{array}{c} O \\ \parallel \\ RCOH \\ \end{array} + \begin{array}{c} SOCl_2 \\ \hline Thionyl chloride \\ \end{array} \longrightarrow R - \begin{array}{c} O \\ \parallel \\ R - C - Cl \\ \end{array} + \begin{array}{c} SO_2 \\ + \\ HCl \\ \end{array}$$

$$\begin{array}{c} O \\ \parallel \\ 3 \text{ RCOH } + \\ & \begin{array}{c} \textbf{PCl}_3 \\ \text{Phosphorus} \\ \text{trichloride} \end{array} \end{array} \longrightarrow \begin{array}{c} O \\ \parallel \\ 3 \text{ RCCl } + \text{H}_3 \textbf{PO}_3 \end{array}$$

$$\begin{array}{c} O \\ \parallel \\ RCOH \\ + \\ \begin{array}{c} \textbf{PCl}_5 \\ \textbf{Phosphorus} \\ \textbf{pentachloride} \end{array} \longrightarrow \begin{array}{c} O \\ \parallel \\ RCCI \\ + \\ \textbf{POCl}_3 \\ + \\ \textbf{HC} \end{array}$$

Reações de cloretos de acila

- → Cloretos de acila são os derivados de acila mais reativos e podem ser utilizados para fazer qualquer outro derivado.
- → Como cloretos de acila são obtidos a partir de ácidos carboxílicos eles dão uma via para síntese de compostos acilas a parti de ácidos carboxílicos
- → Cloretos de Aila regem violentamente com água dando ácidos carboxílico mas não é uma eação importante.

Anidridos de ácidos

- Síntese de anidridos de ácidos carboxílicos
 - → Cloretos de acila reagem com ácidos carboxílicos formando anidridos mistos ou simétricos
 - É necessário utilizar bases como piridina

$$\begin{array}{c}
O \\
R
\end{array}$$

$$\begin{array}{c}
O \\
C
\end{array}$$

$$\begin{array}{c}
O \\
R
\end{array}$$

$$\begin{array}{c}
O \\
C
\end{array}$$

$$\begin{array}{c}
O \\
R
\end{array}$$

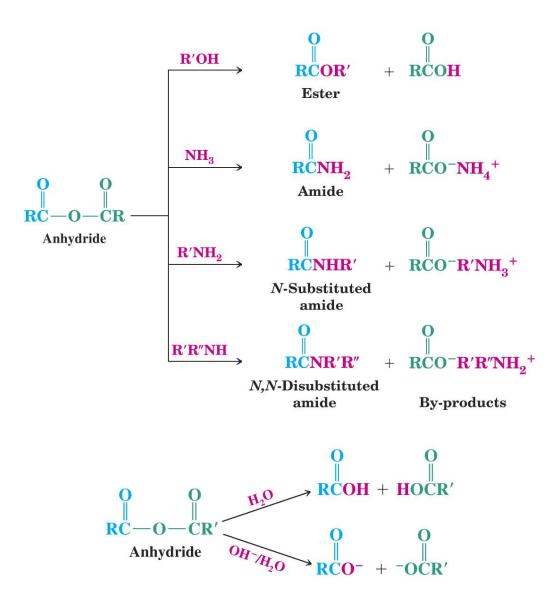
$$\begin{array}{c}
O \\
C
\end{array}$$

$$\begin{array}{c}
O \\
R
\end{array}$$

$$\begin{array}{c}
O \\
C
\end{array}$$

$$\begin{array}{c}
O \\
R
\end{array}$$

$$\begin{array}{c}
O \\
C
\end{array}$$


$$\begin{array}{c}
O \\
R
\end{array}$$

→ Carboxilatos de sódio reagem com cloretos de acila formando anidridos.

$$\begin{array}{c}
\mathbf{O} \\
\parallel \\
\mathbf{C} \\
\mathbf{O}^{-}\mathbf{N}\mathbf{a}^{+}
\end{array}
+
\begin{array}{c}
\mathbf{O} \\
\parallel \\
\mathbf{C} \\
\mathbf{C}
\end{array}
-
\begin{array}{c}
\mathbf{O} \\
\parallel \\
\mathbf{C}
\end{array}
-
\begin{array}{c}
\mathbf{C} \\
\mathbf{R}'
\end{array}
+
\begin{array}{c}
\mathbf{N}\mathbf{a}^{+}\mathbf{C}\mathbf{I}^{-}$$

→ Anidridos cíclicos de 5 e 6 membros podem ser formados aquecendo o diácido apropriado

- Reações de anidridos de ácidos carboxílicos
 - → Anidridos de ácidos carboxílicos são bem reativos e podem ser utilizados para sintetizar esteres e amidas
 - P Hidrólise de um anidrido fornece os ácidos carboxílicos correspondentes

♦ Ésteres

- Síntese de ésteres: Esterificação
 - → Reações catalisadas por ácidos com álcoois e ácidos carboxílicos dando esteres são denominadas de esterificação de Fischer
 - → Esterificação de fischer é um equilíbrio
 - A formação do ester é favorecida pelo uso de excesso de álcool ou ácido carboxílico.
 - Formação de ester é também favorecida pela remoção de água;

$$R$$
 C OH $+$ R' OH \xrightarrow{HA} C OR' $+$ H_2O

→ Esterificação com metanol marcado fornece um produto marcado no oxigenio ligado ao grupo metílico . O mecanismo consistente com essa observação está abaixo.

$$C_{6}H_{5}C + OH + CH_{3} = 18O + H \xrightarrow{HA} C_{6}H_{5}C = 18OCH_{3} + H_{2}O$$

$$H = C_{6}H_{5}C + OH + CH_{3} = 18O + H \xrightarrow{C_{6}H_{5}} C_{6}H_{5}C = 18OCH_{3} + H_{2}O$$

$$H = C_{6}H_{5}C + OH + CH_{3} = 18O + H \xrightarrow{C_{6}H_{5}} C_{6}H_{5}C = 18OCH_{3} + H_{2}O$$

$$H = C_{6}H_{5}C + OH + CH_{3} = 18OCH_{3} + H_{2}O$$

$$C_{6}H_{5}C + OH + CH_{3} = 18OCH_{3} + H_{2}O$$

$$C_{6}H_{5}C + OH + CH_{3} = 18OCH_{3} + H_{2}O$$

$$C_{6}H_{5}C + OH + CH_{3} = 18OCH_{3} + H_{2}O$$

$$C_{6}H_{5}C + OH + CH_{3} = 18OCH_{3} + H_{2}O$$

$$C_{6}H_{5}C + OH + CH_{3} = 18OCH_{3} + H_{2}O$$

$$C_{6}H_{5}C + OH + CH_{3} = 18OCH_{3} + H_{2}O$$

$$C_{6}H_{5}C + OH + CH_{3}C + OH + CH_{3}C + OH$$

$$C_{6}H_{5}C + OH$$

→ The reverse reaction is acid-catalyzed ester hydrolysis

Ester hydrolysis is favored by use of dilute aqueous acid

$$\begin{array}{c}
O \\
\parallel \\
C \\
OR'
\end{array}
+ H2O \xrightarrow{H_3O^+}
\begin{array}{c}
O \\
\parallel \\
C \\
OH
\end{array}
+ R'-OH$$

→ Esters from Acid Chlorides

Acid chlorides react readily with alcohols in the presence of a base (e.g. pyridine) to form esters

$$\mathbf{R} - \mathbf{C} + \mathbf{R}' - \ddot{\mathbf{O}} - \mathbf{H} \xrightarrow{-\mathbf{HCl}} \mathbf{R} - \mathbf{C}$$

$$: \mathbf{Cl}: \qquad \ddot{\mathbf{O}} - \mathbf{R}'$$

→ Esters from Carboxylic Acid Anhydrides

Alcohols react readily with anhydrides to form esters

$$\begin{array}{c} \mathbf{RC} \\ \mathbf{O} \\ \mathbf{RC} \\ \mathbf{O} \end{array} + \mathbf{R'} - \mathbf{OH} \longrightarrow \mathbf{RC} \\ \mathbf{O} - \mathbf{R'} \\ \end{array} + \begin{array}{c} \mathbf{O} \\ \mathbf{RCOH} \\ \mathbf{O} - \mathbf{R'} \end{array}$$

$$\begin{pmatrix} O \\ \parallel \\ CH_3C - \end{pmatrix}_2O + C_6H_5CH_2OH \longrightarrow CH_3COCH_2C_6H_5 + CH_3CO_2H$$
Acetic Benzyl Benzyl acetate
anhydride alcohol

- Base-Promoted Hydrolysis of Esters: Saponification
 - → Reaction of an ester with sodium hydroxide results in the formation of a sodium carboxylate and an alcohol

$$\begin{array}{c} O \\ \parallel \\ RC - \mathbf{OR'} + NaOH \xrightarrow{H_2O} & \begin{array}{c} O \\ \parallel \\ RC - O^-Na^+ & + \mathbf{R'OH} \end{array}$$

$$\begin{array}{c} \mathbf{Ester} & \mathbf{Sodium\ carboxylate} & \mathbf{Alcohol} \end{array}$$

- → The mechanism is reversible until the alcohol product is formed
- → Protonation of the alkoxide by the initially formed carboxylic acid is irreversible
 - P This step draws the overall equilibrium toward completion of the hydrolysis

A hydroxide ion attacks the carbonyl carbon atom.

The tetrahedral intermediate expels an alkoxide ion.

Transfer of a proton leads to the products of the reaction.

Lactones

 $\rightarrow \gamma$ - or δ -Hydroxyacids undergo acid catalyzed reaction to give cyclic esters known as γ - or δ -lactones, respectively

$$R - CH - CH_{2} - CH_{2} - CH_{2} - CC - OH \longrightarrow CH_{2} - CH_{2} - CC - OH \longrightarrow R$$

$$\vdots O : H \longrightarrow R$$

A δ-hydroxy acid

→ Lactones can be hydrolyzed with aqueous base

Acidification of the carboxylate product can lead back to the original lactone if too much acid is added

OH OH-/H₂O

C₆H₅

$$C_6H_5$$

OH O

C₆H₅CHCH₂CH₂C-O-

O°C

HA, exactly one equivalent

OH O

C₆H₅CHCH₂CH₂COH

♦ Amides

Synthesis of Amides

→ Amides From Acyl Chlorides

- Ammonia, primary or secondary amines react with acid chlorides to form amides
- An excess of amine is added to neutralize the HCI formed in the reaction
- Carboxylic acids can be converted to amides via the corresponding acid chloride

Reactant

Ammonia; R', R'' = H

 1° Amine; R' = H, R'' = alkyl, aryl

 2° Amine; R', R'' = alkyl, aryl

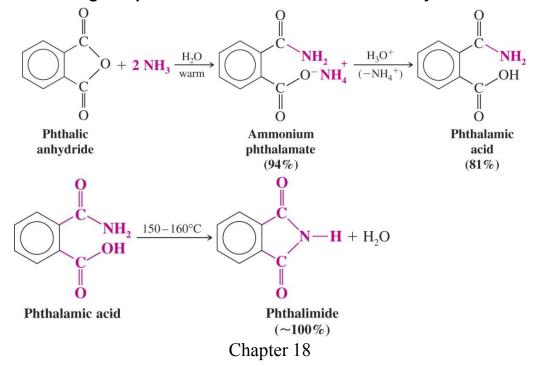
Product

Unsubstituted amide; R', R'' = H

N-Substituted amide; R' = H, R'' = alkyl, aryl

N,N-Disubstituted amide; R',R'' = alkyl, aryl

→ Amides from Carboxylic Anhydrides


Anhydrides react with 2 equivalents of amine to produce an amide and an ammonium carboxylate

$$\begin{pmatrix} O \\ \parallel \\ RC - \end{pmatrix}_{2}O + 2R' - \overset{\circ}{N}H \longrightarrow \overset{\circ}{RC} - \overset{\circ}{N} - R' + RCO_{2}^{-}R'R''NH_{2}$$

$$\downarrow \\ R'' \qquad \qquad R''$$

R', R" can be H, alkyl or aryl

- Reaction of a cyclic anhydride with an amine, followed by acidification yields a product containing both amide and carboxylic acid functional groups
- P Heating this product results in the formation of a cyclic imide

→ Amides from Carboxylic Acids and Ammonium Carboxylates

Direct reaction of carboxylic acids and ammonia yields ammonium salts

$$\begin{array}{c}
O \\
\parallel \\
C \\
OH
\end{array}
+ \ddot{N}H_{3} \Longrightarrow \begin{array}{c}
O \\
\parallel \\
C \\
O^{-}NH_{4}^{+}
\end{array}$$
An ammonium carboxylate

- Some ammonium salts of carboxylic acids can be dehydrated to the amide at high temperatures
- P This is generally a poor method of amide synthesis

$$R \xrightarrow{O} O^{-} NH_{4}^{+}_{(solid)} \xrightarrow{heat} R - C + H_{2}O$$

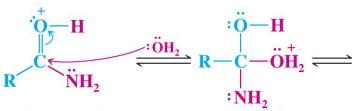
$$NH_{2}$$

A good way to synthesize an amide is to convert a carboxylic acid to an acid chloride and to then to react the acid chloride with ammonia or an amine

- P Dicylohexylcarbodiimide (DCC) is a reagent used to form amides from carboxylic acids and amines
- DCC activates the carbonyl group of a carboxylic acid toward nucleophilic addition-elimination

$$\begin{array}{c} \ddot{O}: & \ddot{N} & \ddot{N} - C_6 H_{11} \\ \ddot{N}$$

Hydrolysis of Amides

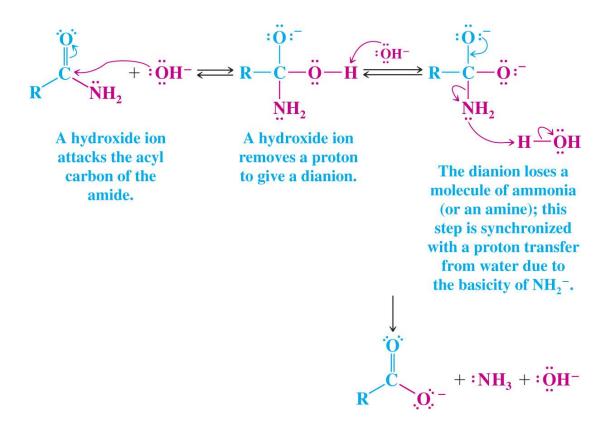

→ Heating an amide in concentrated aqueous acid or base causes hydrolysis

P Hydrolysis of an amide is slower than hydrolysis of an ester

$$\begin{array}{c}
O \\
\parallel \\
C \\
NH_2
\end{array}
+ H_3O^+ \xrightarrow{\text{heat}} O \\
\downarrow \\
R \\
OH$$

$$\begin{array}{c}
O \\
\parallel \\
C \\
NH_{2}
\end{array}
+ Na^{+}OH^{-} \xrightarrow{H_{2}O} \begin{array}{c}
O \\
\parallel \\
C \\
O^{-}Na^{+}
\end{array}
+ NH_{3}$$

The amide carbonyl accepts a proton from the aqueous acid.



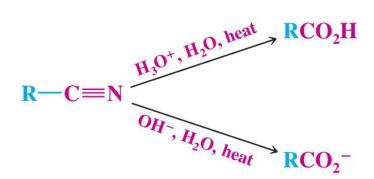
A water molecule attacks the protonated carbonyl to give a tetrahedral intermediate. A proton is lost at one oxygen and gained at the nitrogen.

$$\begin{array}{c}
\ddot{O} - H \\
R - C - O - H \Longrightarrow \\
\downarrow NH_3 \\
+ \end{array}$$

Loss of a molecule of ammonia gives a protonated carboxylic acid.

Transfer of a proton to ammonia leads to the carboxylic acid and an ammonium ion. $+\stackrel{+}{\mathbf{N}}\mathbf{H}_{4}$

Nitriles from the Dehydration of Amides


→ A nitrile can be formed by reaction of an amide with phosphorous pentoxide or boiling acetic anhydride

$$R - C \xrightarrow{P_4O_{10} \text{ or } (CH_3CO)_2O} R - C \equiv N: + H_3PO_4 \text{ or } CH_3CO_2H$$

$$: NH_2 \xrightarrow{\text{heat} (-H_2O)} A \text{ nitrile}$$

Hydrolysis of Nitriles

→ A nitrile is the synthetic equivalent of a carboxylic acid because it can be converted to a carboxylic acid by hydrolysis

$$R - C = N : + H - O + H \longrightarrow R - C = NH \longleftrightarrow R - C = NH + O + H \longrightarrow Slow$$

$$Protonated nitrile$$

$$H \longrightarrow C \longrightarrow NH + H \longrightarrow C \longrightarrow NH + H \longrightarrow C \longrightarrow H$$

$$R \longrightarrow NH \longrightarrow NH \longrightarrow R$$

$$A mide tautomer$$

$$H \longrightarrow C \longrightarrow NH \longrightarrow R$$

$$R - C = N: + -: \ddot{O} - H \longrightarrow R - C - \ddot{N}H - \ddot{O}H - \ddot$$

♦ Decarboxylation of Carboxylic Acids

- → β-Keto carboxylic acids and their salts decarboxylate readily when heated
 - Some even decarboxylate slowly at room temperature

 \rightarrow The mechanism of β -keto acid decarboxylation proceeds through a 6-membered ring transition state

→ Carboxylate anions decarboxylate rapidly because they form a resonance-stabilized enolate

→ Malonic acids also decarboxylate readily

$$\begin{array}{c|cccc}
\mathbf{O} & R & O & R & O \\
\parallel & \parallel & \parallel & \parallel & R & O \\
\mathbf{HOC} - \mathbf{C} - \mathbf{COH} & \xrightarrow{100-150^{\circ}\mathbf{C}} & \mathbf{H} - \mathbf{C} - \mathbf{COH} + \mathbf{CO_2} \\
R & & R
\end{array}$$

A malonic acid